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We analyse the nonlinear flow of a Newtonian fluid in an elastic tube when subjected 
to an oscillatory pressure gradient with motivation from the problem of blood flow 
in arteries. Two parameters : the unsteadiness, a = R,(w/v) i  and the diameter 
variation, E = (limax-Ro)/Ro, are important in characterizing the flow problem. The 
diameter variation ( E )  is taken to be small so that the perturbation method is valid, 
and asymptotic solutions for two limiting cases of the steady-streaming Reynolds 
number, R, = 

The results indicate that nonlinear convective acceleration induces finite mean 
pressure gradient and mean wall shear rate even when no mean flow occurs. The 
magnitude of this effect depends on the amplitude of the diameter variation and the 
flow rate waveforms and the phase angle difference between them, which can be 
related to the impedance (pressure/flow) phase angle. Changes in the impedance 
phase angle, which is indicative of the degree of wave reflection, can change the 
direction of the induced mean flow. It is also shown that the induced mean wall shear 
rate is proportional to a when a is large. In addition, it is observed that the steady 
flow structure in the core can be influenced by wave reflection. The streamlines in the 
core are always parallel to the tube wall when there is no reflection. However, with 
total reflection, the induced mean flow recirculates between the nodes and points of 
maximum amplitude in a closed streamline pattern. Implications of the steady- 
streaming phenomena for physiological flow applications are discussed in a 
concluding section. 

(either small or large), are derived. 

1. Introduction 
Fluid mechanics, particularly wall shear stress is believed by many to play an 

important role in vascular homeostasis and vascular disease (Ku et al. 1985; Nerem 
& Levesque 1987). Detailed knowledge of blood flow in large arteries is essential for 
understanding the influence of fluid mechanics on the arterial wall. To model flow 
behaviour in large arteries, Womersley (1955, 1957 a )  developed the linear theory of 
oscillatory flow in straight, isotropic, thin-walled, linearly elastic tubes by neglecting 
convective acceleration. In the present work, we shall concentrate on the nonlinear 
effects resulting from the convective acceleration. In addition, we will determine the 
role played by wave reflection in modulating the nonlinear effects. 

Steady-streaming flow is an important nonlinear characteristic of oscillatory 
viscous flow. When a purely oscillatory viscous flow is set up over a curved surface, 
the Reynolds stresses associated with the nonlinear convective acceleration generate 
a steady streaming flow in the boundary layer, and the steady flow at the edge of the 
boundary layer can drive a mean flow in the inviscid core. Schlichting (1932) found 
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such flow when considering the small oscillations of a cylinder in a fluid a t  rest. The 
work of Riley (1965) and Stuart (1966) showed that the steady streaming could be 
characterized by the steady-streaming Reynolds number. When the steady- 
streaming Reynolds number is small, a simple Stokes-layer structure can describe 
the flow behaviour ; while if the steady-streaming Reynolds number is large, a double 
boundary-layer scheme is required. Although they considered flow over a cylinder, 
their conclusions apply to any two-dimensional external flow problem. Riley (1975) 
reviewed several papers with regard to these kinds of flow phenomena. Merchant & 
Davis (1989) studied the problem in which the external free stream includes not only 
the purely oscillatory component but also a mean flow component. 

Several other types of flow can generate steady streaming: oscillatory flow in 
tapered tubes (Hall 1974; Grotberg 1984), viscous flow in wave fields (Longuet- 
Higgins 1953), and oscillatory flow in wavy-walled channels (Nishimura et al. 1989). 
We are particularly interested in oscillatory flow with wall motion, a characteristic 
of physiological flow problems. Fung & Yih (1968) studied the nonlinear effects of 
peristaltic flow and concluded that the mean flow induced by the peristaltic motion 
of the wall is proportional to the square of wall movement amplitude. Secomb (1978) 
studied flow in a two-dimensional channel with pulsating walls and Padmanabham 
& Pedley ( 1987) considered the three-dimensional steady-streaming problem. These 
researchers have shown that in confined flow problems the mean vorticity stemming 
from the nonlinear convective acceleration is distributed over the entire cross-section 
and the steady streaming in the core should be described by the theory of inviscid 
rotational flow instead of by a double boundary-layer structure. 

Womersley (1957 b )  calculated the first-order perturbation corrections for the 
nonlinear convective terms and concluded that the nonlinear effect on mean flow was 
not negligible. Ling & Atabek (1972), assuming that the local convective acceleration 
has a similar profile to the local velocity, carried out a nonlinear analysis of aortic 
flow using numerical methods. They analysed aortic flow data from dogs, and their 
results suggested that the convective acceleration might be important in the aorta. 
The numerical simulations reported by Dutta & Tarbell (1989) indicate that the 
steady-streaming flow in a straight elastic tube is dependent upon the phase angle 
between the pressure gradient and the wall motion. Recently, Dragon & Grotberg 
(1991) analysed mass transport in a flexible tube and proposed that the time- 
averaged mass transfer rate would be influenced by the existing steady-streaming 
flow. 

In  the present work, we determine the steady-streaming flow behaviour for the 
nonlinear Womersley problem. Assuming the wall motion is small (a realistic 
assumption in arteries), perturbation techniques are used to solve the weakly 
nonlinear version of the problem. We will discuss the effects of Womersley’s 
unsteadiness parameter (a) and the steady -streaming Reynolds number (R,). In  
addition, the influence of wave reflection will be taken into account. A similar 
approach was adopted by Womersley (1957 b)  and by Dragon & Grotberg (1991). But 
their solutions are only valid for small steady-streaming Reynolds number, and they 
did not consider the effects induced by wave reflections. 

The problem is formulated in $2. Solutions for the case of arbitrary 01 but small R, 
are presented in $3;  and solutions for the case of large a, with R, either small or large, 
are discussed in $4. In  $5, the dependence of steady streaming on axial position along 
the tube is described and the role played by the wall property (tube law) is also 
discussed. I n  $6, the effects of the unsteadiness parameter, steady-streaming 
Reynolds number and wave reflection as characterized by the impedance phase angle 
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are discussed. Finally in $7,  we compare the present work with that of others and 
discuss the physiological implications. 

2. Formulation 
We model blood flow in arteries using a homogeneous, incompressible Newtonian 

fluid in an isotropic, thin-walled, elastic tube with longitudinal constraint when the 
fluid is subjected to an oscillatory pressure gradient. The coupling of fluid motion and 
wall motion in general leads to a very difficult problem. However, by assuming the 
tube wall is elastic and that longitudinal wall motion is negligible, approximations 
which are quite reasonable for large arteries under normal flow conditions 
(Womersley 1 9 5 7 ~ ;  Ling & Atabek 1972), the equations describing wall motion can 
be simplified greatly, and we can concentrate on solving the nonlinear problem of 
fluid motion. 

To describe axisymmetric flow in a tube, we choose the cylindrical coordinates 
r ,  6’ and x, with z along the axis of the tube. The axial and radial velocities (W and U ,  
respectively) are governed by the Navier-Stokes equations and the equation of 

The purely elastic wall motion can be described by the following constitutive 
equation : 

= a(P)  = 1 +lp (P-Po) +&“(Po) (P-P,)2 + ... . (2.4) 
R - 
RO 

We will develop travelling wave solutions in the x-direction subject to zero-slip 
boundary conditions assuming that there is no longitudinal wall motion. Hence, the 
boundary conditions are 

- = Q ,  U = O  at r = 0 ,  ( 2 . 5 ~ )  
ar 

(2.5b) W = O  U = - - ,  at r = R ( t , z ) .  

In the above, t denotes time, P is the pressure, Po is the mean pressure, p is the 
density, v is the kinematic viscosity, R is the tube radius, R, is the mean radius, and 
D is the distensibility of the tube wall. 

aw 

3R 
at 

We introduce non-dimensional variables and parameters as follows : 

where w is the angular frequency, C, denotes the characteristic wave speed, and a is 
Womersley’s unsteadiness parameter. Now dimensionless equations can be derived 
in terms of the above variables, and the dimensionless equations can be simplified by 
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making the long-wavelength approximation, IwRo/Col < 1, which is realistic for 
arteries (Ling & Atabek 1972). Under this assumption, the axial viscous transport 
terms are negligible and (2.2) simply reduces to aP/ar = 0, indicating that the pressure 
is independent of radial position. However, the problem formulation is still awkward 
because of the moving boundary. To overcome this, we introduce a coordinate 
transformation 5 = r/R(x, t ). Then, the final dimensionless equations are 

_ -  

i a  aw aaaw 
--([U)+a--g-- = 0, 5 a5 ax axa6 

a =  l+&+-p2+ ...) k 
2 

which are subject to the following boundary conditions : 

aw - _  - 0 ,  u = O  a t  < = O ,  
36 

aa 
a7 w = O ,  u = -  at 5 = 1 .  

These equations are nonlinear owing to the convective acceleration terms and 
therefore difficult to solve in general. But the diameter variation, s (= (R,,, -Ro)/Rok 
in an artery is so small (typically 5-10 YO) that  perturbation methods can be used to 
attack the problem. 

We consider the case of flow with purely sinusoidal flow rate at the input to the 
tube (x = 0) and no mean flow. Consequently, solutions of (2.6)-(2.9) will be sought 
in the following perturbation forms : 

P = ~ P l l + ~ 2 ( P z o + P 2 1 + P 2 2 ) + o ( ~ 3 ) ,  (2.10a) 
u = I + ~ a , , + ~ ~ ( a ~ , + a ~ , + a , ~ ) + O ( s ~ ) ,  (2.10b) 
w = Ewll + E2(w20 + w21 + wz2) + 0(€3), (2.1Oc) 

u = EUll + s2(Uz0 + Uz1 +uzz)  + 0(e3) ,  (2.10d) 

where pij represents the j t h  harmonic of the ith-order term in the expansion o f p ,  
with similar definitions for ai,, wt, and uii. 

The solutions of O(s)  are those obtained by Womersley (1957a) for the linearized 
equations. In  the present work, we will concentrate on the steady components of 
O(e2), wz0 and uzo, which represent the main contributions to steady streaming. Our 
solution strategy is outlined below. Substituting (2.10) into (2.6), retaining terms up 
to O(e4), and taking the time average, we obtain 

(2.11) 

where h [ I  represents a very complicated function containing terms of O(s) ,  O(s2), 
O(s3) and O(e4). The first term of (2.11) describes the viscous effects on the steady flow 
and the second term describes the corresponding steady convective effects. The 
steady-streaming Reynolds number, R, = s2u2, is defined as the ratio of the 
magnitudes of steady convective effects to the steady viscous effects (Riley 1965; 
Stuart 1966). When R, < 0(1), the steady convective terms can be neglected and we 
need only solve the equations up to O(a2)  to determine wz0 and uzo. The solution 
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procedure for this case is described in $3. However, if R, 2 O(1) (a 2 O(l/e)), an 
alternative approach is needed. Inside the Stokes layer, where the normalized 
distance to the wall is on the order of l/a, the viscous term still dominates. But the 
steady convective term in the core is not negligible so that the steady component of 
the velocity profile cannot be determined until we evaluate the equations up to O(s4). 
The solution for R, fixed as E -+ 0, with the further limits R, + 0 and R, +. 00 will be 
discussed in $4. As we will show in $53 and 4, the dependence of steady streaming on 
the axial position, x ,  and the radial coordinate, 5, a t  O(e2)  are separable for the cases 
we solve. In $$3 and 4, we determine the dependence on E and leave the dependence 
on x for $5 where the tube law is discussed. 

3. Solution for arbitrary a and small R, 
Substituting (2.10) into (2.6)-(2.7) and (2.9) and equating coefficients of equal 

powers of E ,  we obtain the equations and boundary conditions for the O ( E )  and O ( 2 )  
problems. 

O(E)  solution The periodic solution of the O ( E )  problem is 

pil = R { f ( x )  eiT}, a,, = R{ -&‘tf’(x) eiT}, (3.la, b) 

( 3 . 1 ~ )  

(3 . ld)  

(3.1 e )  

where R{} denotes the real part of a complex variable and the prime indicates 
differentiation with respect to x .  f ( x )  is a function which describes the dependence of 
the flow rate on axial position at O(s) .  It can be determined from the axial boundary 
conditions and the tube law, but at this moment we retain it as an unknown function. 

Clearly, at O ( E )  we have recovered Womersley’s linear theory (Womersley 1957a) 
as expected. The second-order solution contains nonlinear interactions and will have 
both steady and oscillatory components. We will concentrate on the steady 
component and omit the oscillatory part in the present work. 

O(s2) solution : steady-streaming efSects The O(e2) equations for the steady-streaming 
component of the motion are 

subject to 

i a  aw2o - a%, awl1 awl1 --(5u,,)+- - 5---a1,- 5 a5 ax ax a5 ax 

u2, = 0 at E = 0, 

(3.3) 

(3.4a) 

w2, = 0, u2, = O  at [ =  1,  (3.4b) 
where p;,(z) represents the mean pressure gradient of O(E,) and an overbar denotes 
a time average. 

Equations (3.2) and (3.3) can be transformed into a set of uncoupled non- 
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homogeneous ordinary differential equations. The solution procedure is straight- 
forward, but the calculations are lengthy and complicated so they are omitted. The 
solution is 

(3.5b) 

(3.5c) 

F ( z )  = iCi C:2f'(z)f*(z), (3.5d) 

where the asterisk denotes the complex conjugate. 
The axial velocity profile in (3.5b) can be integrated and differentiated to 

determine the steady flow rate and the steady wall shear rate. Although the velocity 
profile is very complicated, the wall shear rate has the following simple form: 

s2, = -u'E~R { F ( z )  [C;lq' i -+-+- 7i 8 C; 1 ( 1 1  --i 2a2 ) -- CT2 1 ( -+- 2a2 5 :)I} . (3.6) 

Here, s2, is the dimensionless mean wall shear rate (where the characteristic shear 
rate has been taken as C,/R,). The mean flow rate has been calculated by integration 
of the axial velocity profile and shown to be identically zero as required by the 
equation of continuity. 

When no mean flow is imposed, the linear theory (O(6) solution) predicts that the 
mean pressure gradient and mean wall shear rate are also zero. However, taking into 
account the nonlinear convective acceleration, we find that the mean pressure 
gradient, (3.5a), and the mean shear rate, (3.6), are not zero owing to steady 
streaming. The magnitude of these effects depends on a, E and F ( x ) .  In $5,  we will 
show that F ( z )  is an axial-coordinate-dependent complex function defined by the end 
conditions which may be interpreted in terms of wave reflection. The influence of 
these parameters on the steady-streaming phenomena will be explored in $6. 

4. Solution for large a, small and large R, 
For large a, the flow field can be divided into two regions, the Stokes layer near 

the wall and the core. In the following analysis, we employ the original coordinate, 
6,  to denote the radial position in the core. However, to examine the flow phenomena 
in the near-wall Stokes layer, which becomes very thin when a is large, we adopt the 
coordinate scale, 7 = 1 - c / (  l/a), where 1 -6 is the normalized distance from the wall 
and l/a is the normalized Stokes-layer thickness. This new coordinate trans- 
formation leads to different sets of equations for the Stokes layer and the core. These 
two regions can be matched by the asymptotic matching principle (Van Dyke 1964). 

In  this section, we shall seek asymptotic solutions in the limit a = O(6-l) 
(R, = O(1)) as s+O, and then take further limits R,+O and Bs+ to solve the 
steady-streaming problem. A similar method has been used by Lyne (1970) to attack 
steady-streaming problems in curved pipes. 
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O ( E )  soEution Substituting (2.10) into (2.6)-(2.8) and then neglecting the viscous 
term because a is large, we obtain the O(s) equations of the core. The O(s) equations 
in the Stokes layer can be obtained by adopting the 7 coordinate scale and neglecting 
the higher-order terms. Afterwards, by matching the velocities at the edge of Stokes 
layer (E-. 1 and 7 + co), we obtain the composite periodic solution at O ( E ) :  

p;,(x) = R{~(x) ei71, a,, = ~{-ij+(x)ei7}, (4.1 a, b)  
(4 .1c,d)  

where f(x) is the large-a approximation of f(x). 
O ( 2 )  solution: steady-streaming effects in the boundary layer Collecting all of the 

O(e2)  terms and taking the time average leads to the governing equations for the 
steady-streaming component in the core and Stokes layer. The solution for the 
induced mean pressure gradient can be obtained by solving the O ( 2 )  equations in the 

w,, = R{i[l -exp (-i+)] f i x )  ei71, u,, = R{ -ii@(x) ei71, 

core, with the result 
(4.2) 

P(x) = ij+(x)f”*(x). (4.3) 
By solving the time-averaged component of O(e2) in the Stokes layer, the steady- 
streaming components of the axial velocity in the Stokes layer can be determined 
and expressed as 

w20 = R{P*(x) [(i -exp ( -  i”)) ++ (exp ($7) - 1) +ii  (exp (-it71 - 1) 

+f(l+i)(exp(-1/2r])-l)]}. (4.4) 
But the steady component of the velocity profile in the core cannot be determined 
until we evaluate the equations at O(e3) and O(s4). 

O(e4) solution : steady-streaming efSects in the core The solution for w,, in the core is 
not a function of 5 (see (4.1)) and neither are the solutions for w2, and wZ2 (which are 
omitted). Because of this, we can simplify the equation of O(e4) in the core and obtain 
the following time-averaged equation : 

Since this equation contains wgl, the following O(e3) equation must also be solved: 

Using (4.6), w3, can be expressed as a function of p,, and wz0 and then aubstituted 
into (4.6). Consequently, because p40, ps l ,  w2, and w22 are not functions of 6 ,  we find 
that the steady flow in the core region is governed by the following equations: 

(4.9a) 

w, = R{$(l+i)P(x)}, u, = 0 at = 1. (4.9b) 

8% - - - 0 ,  u,=O at g = O ,  
35 

subject to 

12 FLM 230 
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The boundary conditions a t  (=  1 come from matching the core solution to the 
Stokes-layer solution. g(x)  is an arbitrary function chosen to satisfy 

(4.10) 

which stems from the conservation of mass and w, = wz ,+R{~(x ) } .  
Equations (4.7)-(4.10) can be solved analytically when R, is either small or large. 

If R, is small, E < R, 4 1,  the solution can be expressed in terms of a stream function, 
$,, as a power series in R,: 

+R,$ 

$, = f(t4 - f z )  R@(x) (1 + i)} 

+&E3 -A[) R{( 1 + i)P(z)} R{( 1 + i)E’(x)} + O(R,2), (4.1 1) 

where the steady stream function is defined as 

(4.12) 

If R, S 1,  an approximate solution can be obtained by modifying Secomb’s (1978) 
solution : 

(4.13) $ = --ssinnE2R{p(x) (l+i)}. 

For the case of intermediate R,, when both the viscous term and inertial terms are 
important, an analytical solution is not known. 

The dimensionless wall shear rate can be calculated from the axial velocity profile, 
and for R, -4 1 the result is 

s20 = e2 R{ ( - 3 - 3i - $z(i)~)p(z)} (4.14) 

and for R, S 1,  s20 = e2R{ -ia(i)iP(z)}. (4.15) 

3 
8x 

5. The dependence on axial position and the tube law 
According to (3.5), the axial dependence of steady-streaming effects is contained 

in the function F(x ) .  Once the O ( E )  dependence of the flow rate on axial position is 
known ( f ( x )  in (3.1)),  F ( x )  can be determined through (3.5d). The dimensionless flow 
rate a t  O ( E ) ,  pl(z) ,  can be expressed as 

pl(z) = R{q(x) eiacz) ei7} = R{iiC:f(z) ei‘}, (5.1) 
where p is the amplitude of the flow rate and p denotes the phase angle. Then F ( x )  
can be expressed as 

The first term on the right-hand side of (5.2) is related to the change of flow rate 
amplitude, which depends on the existence of a reflected wave, and the second term 
is related to the variation of the phase angle. A similar structure was observed in the 
study of steady streaming due to oscillatory boundary layers (Batchelor 1967). We 
should point out that both the flow rate amplitude and phase angle may change with 
position along the aorta as a result of wave reflection from distal sites (Caro et ad. 
1978). 

We can also interpret F ( x )  in another way. Through (3.1 b ) ,  the wall movement can 
be expressed as 

a11 = R{h(x) eiY@) ei7 } = R{ -$5’:f’(x) ei7}, (5.3) 
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FIQURE 3. As figure 2 but at fi = -90". 

where E , ( t )  and Ei(C) are two real functions of 6 which can be determined from 
(3.5u-c). Consequently, the dimensional mean velocity is proportional to &, and D,  
and depends on a and 9. The effect of a is depicted in figure 2 (q5 = 0) and figure 3 
(c j  = - 90"). The velocity profiles depend strongly on the unsteadiness parameter (a), 
especially in the region near the wall. The phase angle, q5, can also change the velocity 
profile dramatically as shown in figure 4 (a = 4) and figure 5 (a = 20). The flow near 
the wall can even change direction due to the change of $ (figure 5) .  It should be 
noted that for all cases depicted in figures 2-5, the induced mean flow rate at 0 ( e 2 ) ,  
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FIGURE 4. Dimensionless induced mean axial velocity profiles for different q5 at a = 4. R, is small. 
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FIGURE 5. As figure 4 but at a = 20. 

is equal to zero (compare (4.10)). However, the integral of the induced mean velocity 
profile, s Ewz0 d6, is not zero. 

For large a, the mean axial velocity profile in the Stokes layer is independent of 
R, and is described by (4.4). The dependence of the mean velocity profile near the 
wall on the phase angle, q5, is shown in figure 6. It is interesting to note that the flow 
near the wall actually changes direction as q5 crosses -45". 

Examination of (4.11) reveals that the mean axial velocity profile in the core is a 
parabolic function for small R, (when a = O ( C ~ ) ) .  This suggests that the induced 
mean flow in the core can be described by Poiseuille's equation with the wall moving 
in the direction opposite the pressure gradient (to match the flow a t  the edge of 
Stokes layer) for R, < 1.  On the other hand, for large R, the mean axial velocity 
profile changes to cos.r~<~ because of the dominant steady convective terms. This is 
the same as Secomb's (1978) result. 
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Dimensionless induced mean axial velocity profiles in the Stokes .dyer at different q5 for 
large a. 7 is the normalized distance from the tube wall (7 = 0 at the wall). 

7. 

We define the dimensionless mean wall shear rate as 

is small. 

Making use of (6.1), we can rewrite (3.6) and express S ,  as a function of a and #. This 
relation is depicted in figure 7. The induced mean wall shear rate is proportional to 
the diameter variation and the oscillatory flow rate amplitude. The phase angle, 9, 
influences not only the magnitude of the induced mean wall shear rate but also the 
direction. For large a,  the dimensionless induced mean wall shear rate (8,) is 
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FIGURE 8. Streamlines in the core for large a but small R, with no wave reflection. 6 and z, are 
the dimensionless radial and axial coordinates respectively. 

proportional to acos (-$+45') (see (4.14) and (4.15)). Therefore, the induced mean 
wall shear rate may be significant when a is large, and its magnitude and direction 
are sensitive to $. 

Incorporating the tube law, (2.8), into (3.1) or (4.1), we find that the pressure 
variation (pll) and the diameter variation (al,) are in phase a t  O(s). Hence, the phase 
angle, q5, can be interpreted as the phase angle difference between the pressure and 
flow, or the impedance (pressure/flow) phase angle. The impedance phase angle is a 
good indicator of the degree of wave reflection in a system. For large u, the 
impedance phase angle is zero everywhere along the tube when there is no wave 
reflection and is either 90" or -90' when total reflection occurs. In  addition, the 
'telegraph line' equation (Taylor 1957) suggests that the oscillatory flow rate and 
diameter variation can be changed significantly by wave reflection. Consequently, 
the induced mean pressure gradient, the induced mean shear rate and the steady- 
streaming velocity profile can be modulated by wave reflections. 

After examining (4.11), (4.13), and (5.7) we find that wave reflection can also 
change the steady flow structure in the core. For large a, the travelling wave always 
generates a steady flow in the wave propagation direction at  the edge of the core and 
induces flow in the opposite direction near the centre region when there is no 
reflection (figure 8). However, the standing wave associated with total reflection 
induces a steady flow circulating between the nodes and the points of maximum 
amplitude (figure 9). The flow direction at the edge of the core is from the point of 
maximum amplitude to the node and the fluid near the centre flows in the reverse 
direction (for large a). The solutions for both large and small R, suggest the same 
circulation structure, and similar results have been observed in Kundt's dust 
experiment (Schlichting 1979) and oscillatory viscous flow in wavy walled channels 
(Nishimura et aZ. 1989). For intermediate wave reflection the steady flow structure is 
a combination of these two structures (parallel and vortex). 
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FIQURE 9. Streamlines in the core for large a but small R, with total reflection. Nodes are at  
z, = 0 and 2 x ,  while maximum amplitude occurs at z, = A. 

7. Discussion 
According to the analysis in 54, the steady-streaming flow scheme at  high a in a 

distensible tube with a travelling wave is similar to the one discussed by Secomb 
(1978). Actually there is a simple relationship between Secomb’s work and ours. If 
we consider the case of total wave reflection with its associated standing wave and 
analyse the flow near the node point, assuming the wavelength is much greater than 
the length of the tube, the matching boundary condition given by (4.9b) can be 
approximated as 

(7.1) w = - a  , (A,*,Bll+A,,B~l)x at E = 1. 

Hence, we can take a solution of the form w, = Z;(t;)x, and the streaming equations 
of the core ((4.7) and (4.8)) can be reduced exactly to those obtained by Secomb 
assuming that the wall motion is independent of axial distance. This is valid only if 
the wavelength is much greater than the length of the tube. It should also be noted 
that Secomb implicitly included a node point because no flow could cross the 
symmetrical plane z = 0. Clearly then, Secomb’s solution is a special cme of the 
present work which describes steady-streaming phenomena when the wave 
propagates along the tube. 

The generation of mean pressure gradient and mean wall shear rate, modulated by 
wave reflection, is the most important characteristic of steady streaming in a 
distensible tube. The relevance of these phenomena to blood flow in the aorta is 
discussed below. 

In  general, the mean pressure gradient applied to an oscillatory tube flow is 
balanced by the mean convective acceleration terms and the mean viscous terms. In 
a rigid straight tube, the nonlinear convective terms are negligible except near the 
entrance. However, this is not true for a flexible tube. In  fact, when a is large, the 
mean convective acceleration terms can be larger than the mean viscous terms down 
the length of a flexible tube. In  addition, the induction of mean pressure gradient is 
enhanced by wave reflection. This indicates that one cannot calculate the mean flow 
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rate or mean wall shear rate directly from the mean pressure gradient by Poiseuille's 
equation, as a physiologist would want to do, without considering the convective 
acceleration, particularly when wave reflection is important. 

An induced mean velocity profile is generated due to the nonlinear convective 
acceleration. The dimensionless induced mean velocity ( O ( 2 ) )  is small compared to 
the imposed flow (O(s)). However, the dimensionless mean velocity, w20, changes 
from zero (no slip on the wall) to  O(c2)  within a very thin Stokes layer (large a). Since 
the characteristic Stokes-layer thickness is on the order of l/a, the dimensionless 
induced mean wall shear rate is on the order of a€'. If a mean flow, O ( E ) ,  is imposed, 
the imposed dimensionless mean wall shear rate is also on the order of c according to 
Poiseuille's equation. I n  this case, the ratio of the induced mean wall shear rate to 
the imposed mean wall shear rate is on the order of 016. 

To obtain a sense of the magnitude of the induced mean wall shear rate in the aorta 
(f = 1 Hz), we take a typical aortic flow case for which a = 20, DV = 10% and Q1 
(first-harmonic flow amplitude) = 15 l/min. For these parameters, the difference in 
the induced mean wall shear rate between q5 = 0 and q5 = -90' (no wave reflection 
and total reflection, respectively) is equivalent to the wall shear rate, generated by 
a Poiseuille flow, of 3.6 l/min, about one quarter of the oscillatory flow rate and of 
the magnitude of the mean cardiac output. Thus i t  appears to be a significant effect 
in the aorta. 

For large a, the induction of mean wall shear rate is proportional to 
a cos ( - q5 + 45"). The range of the first-harmonic impedance phase angle in vivo is 
usually between 0" and -90" (McDonald 1974). As aresult, the induction is positive in 
the range of 0 to - 45", negative in the range -45' to  - 90", and changes sign when the 
impedance phase angle crosses - 45". Therefore, increased wave reflection is 
expected to diminish the mean wall shear rate. It is interesting to note in this context 
that the impedance phase angle of hypertensive patients is closer to -90" than in 
normal patients (Merillon el al. 1982). The present theory indicates that the mean 
wall shear rate would be reduced in hypertensive patients relative to normal. Since 
low (or oscillatory) mean wall shear stress appears to be the fluid mechanical factor 
which best correlates with the localization of atherosclerotic plaques in branching 
arteries (Ku et al. 1985), our results suggest an indirect mechanism for the role of 
hypertension in arterial disease : hypertension + increased wave reflection + reduced 
mean wall shear stress. 

Wave reflection may also influence mass transport to the walls of the tube (artery) 
because of its effect on the mean flow pattern. The mean flow streamlines are parallel 
to the wall of the tube in the absence of wave reflection (figure 8), but a closed 
streamline circulation structure arises with total reflection (figure 9). Increased wave 
reflection will have the tendency to  prolong the residence time of material in the 
circulation structure thus allowing more time for diffusive transport to the wall. In 
addition, the mean radial velocity is zero throughout the flow field in the absence of 
reflection (figure 8), but becomes more significant as wave reflection increases (figure 
9). Since the mean radial velocity can affect mass transport to the vessel wall via 
convection, this mechanism of mass transfer may also be affected by wave reflection. 

Further to the physiological relevance of this work, it must be remembered that 
owing to  mathematical difficulties, we have only considered the case of oscillatory 
flow with zero mean flow rate. But the mean flow rate is not negligible in vivo. For 
small R,, we can obtain the complete mean flow solution by simply adding the 
imposed mean flow field, which can be described by Poiseuille's equation, to the 
induced mean flow field, as described in the present paper. This has been assumed 



Nonlinear analysis of $ow in an elastic tube 357 

implicitly in the discussion of the preceding paragraphs. But for R, 2 0(1) ,  the 
imposed mean flow field is influenced by the oscillatory flow so that Poiseuille’s 
equation cannot be used. However, the mean flow rate is of the same order of 
magnitude as the oscillatory flow rate in arteries, and the solution for this situation 
still remains as a challenge. 

This work was supported by PHS Grant ROl-H35549. We are grateful to 
Professor T. J. Pedley for his valuable advice. 
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